Gyorsító energia
hitelesítés Al(p, $\gamma)$ Si magreakcióval

Sándor Máté Csaba, SAMPAAT.ELTE Harangozó Szilveszter Miklós HASPABT.ELTE Tóth Bálint TOBSACT.ELTE

2013. december 5.

1. A mérés és megvalósítása

A mérés során a Magyar Tudományos Akadémia debreceni Atommagkutató Intézetében található Van de Graaff generátor részecskenyalábjának energiahitelesítését végeztük el az ²⁷Al(p, γ)²⁸Si reakció segítségével, amelynek az egyik legerősebb, $E_p = 992 keV$ -es rezonanciáját használtuk. A mérés célja a keletkező ²⁸Si mag legerjesztődése során kibocsájtott gamma sugárzás detektálása volt. A laborgyakorlat keretében a tényleges generátor kalibráció előtt elkészítettük a céltárgy Al vékony réteget, majd kalibráltuk a HPGe detektort ismert gamma forrásokkal.

2. Al céltárgy elkészítése

A használt céltárgy Al rétegének $d = 1\mu m$ -nél vékonyabbnak kell lennie, mivel a gamma sugarak Al-ban kb. $50 keV/\mu m$ -es energiaveszteséget szenvednek és a vizsgált rezonancia alatt 55 keV-al egy újabb rezonancia következik, amely zavarná a mérésünket. Ennek elkészítéséhez az intézet egyik vákuumpárologtató kamráját használtuk. A kamrában egy wolfram szálra helyezett, alumínium fóliából készített anyagrész szolgáltatta a hordozóanyag forrást. A szükséges fóliamennyiség becsléséhez a párolgást a teljes térszögön egyenletes szórással közelítettük. Ekkor az Al $\rho = 2.7g/cm^3$ sűrűségét, a hordozó és a wolfrám szál r = 5cm távolságát ismerve belátható, hogy a szükséges tömeg:

$$m \simeq \rho * V = \rho * 4 * \pi * r^2 * d = 15mg, \tag{1}$$

amelyhez a $\simeq 10 \mu m$ vastag alufóliából egy $\simeq 6 cm^2$ -es darabot kellett kivágnunk. Ezután az alufólia darabot ráapplikáltuk a wolfram szálra, majd felé helyeztük a tantál hordozót. A rotációs, majd a turbószivattyú elindításával $\approx 10^{-6} bar$ -ra csökkentettük a kamrában a nyomást. Ezután a szálra fokozatosan ráadva az ármarerősséget (max.16V) felpárologtattuk a réteget.

3. A detektor energia és hatásfokkallibrációja

A detektorfej energiakalibrációját ⁶⁰Co,¹³⁷Cs és ¹⁵²Eu segítségével végeztük, melyek aktivitását a $A_{t_1} = A_{t_0} * \exp(\ln(2)(t_1 - t_0)/T_{1/2})$ egyenlet segítségével számoltuk ki. A MAESTRO szoftver segítségével beazonosítottuk a 1.táblázatban található energiaszinteket és meghatároztuk a hozzájuk tartozó csúcsterületeket, valamint azok hibáját és megmértük a labor háttérsugárzását is. A mért spektrumok a 3.ábrán láthatóak. Meghatároztuk ezután az egyes energiákhoz tartozó hatásfokokat a $\mu(E) = T(E)/(A_{t_1} * t * I(E))$ egyenletből, majd a kapott adatpontokra extrapoláltuk a $\mu(E) = a * E^b$ függvényalakot (1). A kapott együtthatók ($a = 0.417892 \pm 0.02672, b = -0.738252 \pm 0.009845$) birtokában meg tudtuk határozni a később mért gamma-átmenetekhez tartozó energiákon jellemző hatásfokokat($\mu_{E=1179} = 1.6658 * 10^{-3} \pm 8.3290 * 10^{-5}, \mu_{E=9749} = 4.7447 * 10^{-4} \pm 2.3724 * 10^{-5}, \mu_{E=10258} = 4.5697 * 10 - 4 \pm 2.2849 * 10^{-5}, \mu_{E=10767} = 4.4092 * 10^{-4} \pm 2.2046 * 10^{-5}$).

1. ábra. Az egyes ismert energiájú csúcsokhoz tartozó hatásfok értékek hibáikkal, valamint az azokra illesztett függvény log-log skálán ábrázolva.

4. A VdG generátor

A mérés során a részecskenyaláb energiaszintjét $E_{ny} = 988 keV$ -es szinttől keV-onkét, majd 995keV-tól 2keV-onként növelve rögzítettük a 2.táblázat fejlécében látható energiacsúcsoknál a detektor által mért hozamot. A kapott görbék felfutó élére illesztett f(x) = a * erf((x - x0)/b) + c standard hibafüggvény inflexiós pontjából (x0) megtudhatjuk a rezonancia helyét az energiaskálánkon. A négy mért csúcsra illesztett görbe a 2.ábrán látható. A kapott inflexiós pont adatok átlaga alapján a mért rezonancia energia $E_{rez}^{mrt} = 990.93 \pm 0.21898 keV$ -nek adódott, amely az irodalmi érték alatt van $\approx 1 keV$ -el. Tehát a Van de Graaff generátor nyalábenergia táblázata az eredmények alapján korrigálásra szorul.

Meghatározhatjuk még azonban a vizsgált rezonancia abszolút erősségét a következő képlettel:

$$\omega\gamma = \frac{2\epsilon}{\lambda_r^2} \frac{A_t}{A_t + A_p} \frac{Y}{\mu b} \tag{2}$$

Adott energián a proton de Broglie hullámhossza a következőképp határozható meg:

$$\lambda_{E_r} = \frac{h}{\sqrt{2mE_r}}, \lambda_{992keV} = 2.876 * 10^{-12} cm$$
(3)

A gamma-átmenetekre jellemző elágazási arány a 1179keV-es és a 10762keVes rezonanciacsúcshoz van megadva így ezekhez számolom ki. Számoljuk ki ezután a csúcsokhoz tartozó mért hozamokat:

$$Y_{E_{cs}} = \frac{T_{E_{cs}}}{Q_{E_{cs}}/q_p} = \begin{cases} 1.453 * 10^{-12} \pm 2.27 * 10^{-14} \\ 1.048 * 10^{-13} \pm 6.69 * 10^{-15} \end{cases}$$
(4)

Az ϵ -t kiszámíthatjuk az energiaelnyelődésből, mégpedig úgy, hogy leosztjuk az egy μ m-vastagságú, 1 cm²-es alumíniumdarabban található atomok számával: $\epsilon = 8.32 * 10^{-15} eV/(n_{Alatom}/cm^2)$.Behelyettesítve az ismert tömegszámokat ($A_t = 27, A_p = 1$), valamint a számolt hatásfok értékeket $(\mu_{1179keV} = 1.6658 * 10^{-3} \pm 8.3290 * 10^{-5}, \mu_{10762keV} = 4.4092 * 10^{-4} \pm 2.2046 * 10^{-5})$ és a megadott elágazási arányokat ($b_{1179keV} = 0.931 \pm 0.022, b_{10762keV} = 0.75 \pm 0.015$) megkaphatjuk a kérdéses csúcsokhoz tartozó abszolút rezonanciaerősségeket:

$$\omega \gamma_{1179keV} = 1.818 \pm 0.323 eV \tag{5}$$

$$\omega \gamma_{10762keV} = 0.614 \pm 0.149eV \tag{6}$$

Magas energián a detektor hatásfokának log-log közelítése nem megbízható, erősen túlbecsül az E = 10762 keV-es csúcsoknál, így ez az érték hitelesnek nem tekinthető.

A 2.táblázat adatainak segítségével meg tudjuk határozni az Al vékonyréteg vastagságát is. Ezt a hozamgörbék szélességéből, valamint a gamma sugárzás alumíniumban mért fajlagos energiaveszteségéből számolhatjuk. A vizsgált rezonanciák szélességből így adódó érték:

$$\sigma_{E_p} = 12.175 \pm 1.189 \to d_{Al} = 0.243 \mu m \tag{7}$$

2. ábra. A mért nyalábenergia-beütés görbék felfutó élének pontjai, valamint az azokra illesztett hibafüggvények.

Minta	E[keV]	I(E)	T(E)	t[s]	$A_{t1}[Bq]$
⁶⁰ Co	1173.2	0.9997	13239 ± 198	933.52	5.9709
⁶⁰ Co	1332.5	0.9998	11657 ± 126	933.52	5.9709
¹³⁷ Cu	661.7	0.8510	10418 ± 156	450.62	7.8090
$^{152}\mathrm{Eu}$	121.8	0.2860	65565 ± 400	3982.52	7.2798
$^{152}\mathrm{Eu}$	244.7	0.0758	14417 ± 235	3982.52	7.2798
$^{152}\mathrm{Eu}$	344.3	0.2650	43070 ± 245	3982.52	7.2798
$^{152}\mathrm{Eu}$	367.8	0.0086	1339 ± 89	3982.52	7.2798
$^{152}\mathrm{Eu}$	411.1	0.0223	3116 ± 97	3982.52	7.2798
$^{152}\mathrm{Eu}$	778.9	0.1294	11206 ± 177	3982.52	7.2798
$^{152}\mathrm{Eu}$	867.4	0.0425	3527 ± 144	3982.52	7.2798
$^{152}\mathrm{Eu}$	1112.1	0.1364	9114 ± 139	3982.52	7.2798
$^{152}\mathrm{Eu}$	1212.9	0.0142	783 ± 90	3982.52	7.2798
152Eu	1299.1	0.0162	875 ± 47	3982.52	7.2798
$^{152}\mathrm{Eu}$	1408.0	0.2101	11948 ± 116	3982.52	7.2798

1. táblázat. A detektor energiakalibrációja során mért és számolt adatok

3. ábra. A detektor kalibrációja során kapott spektrumok ábrázolása (balról jobbra, felülről lefelé: ${}^{60}Co, {}^{137}Cs, {}^{152}Eu$ és a háttérsugárzás).

$E_{ny}[keV]$	t[s]	$Q[\mu C]$	$T(E_{1779keV})$	$T(E_{9749keV})$	$T(E_{10258keV})$	$T(E_{10767keV})$
988	200	100	0	0	0	0
989	200	100	0	0	0	0
990	210	105	16 ± 7	0	0	0
991	1010	500	2407 ± 52	224 ± 27	381 ± 27	165 ± 18
992	1099	521	4393 ± 70	351 ± 40	625 ± 40	305 ± 25
993	1009	501	4522 ± 72	280 ± 41	563 ± 45	326 ± 20
994	973	500	4612 ± 71	353 ± 35	610 ± 39	306 ± 22
995	999	500	4525 ± 72	372 ± 40	591 ± 41	297 ± 23
997	931	509	4571 ± 71	351 ± 41	622 ± 39	388 ± 19
999	1112	582	5218 ± 77	397 ± 43	665 ± 47	362 ± 26
1001	1044	528	4120 ± 69	399 ± 33	577 ± 39	316 ± 22
1003	860	500	2691 ± 57	183 ± 33	425 ± 27	228 ± 18
1005	1015	500	1241 ± 38	78 ± 23	146 ± 24	109 ± 12
1007	924	546	600 ± 25	52 ± 13	95 ± 13	45 ± 9

2. táblázat. A gyorsító hitelesítése során mért adatok